Graphite Supply Chain 2016 November 13-15, 2016

Dr. Joseph Li JLi@superiorgraphite.com

Outline

Brief Introduction to SG

Core Capabilities

Markets we serve

Activities in Li-ion Battery Markets

Questions?

Company Profile

Ownership- Family-owned & Partial ESOP

Since 1917- Providing carbon-based solutions

Employees- 260+ globally

Turnover> \$100M- >35% non-N. American sales

Operations - 5 production sites; 2 R&D facilities

ISO 9001:2015- USA and Europe; ISO 14001:2004- Europe

Customer Focus

Integrity

Performance

Respect

Innovation

Balance

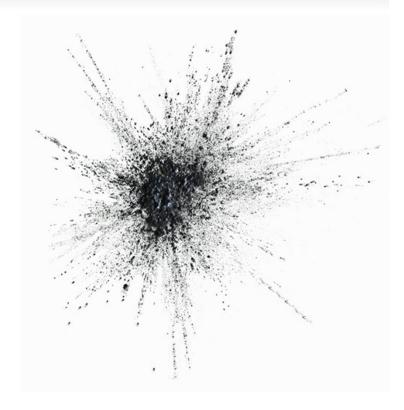
SG Capabilities

Advanced electro-thermal purification technology,

Thermal synthesis, Precision processing-grinding,

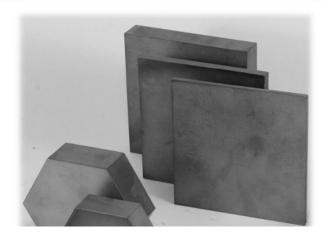
sizing, blending, Carbon/Graphite sourcing,

Consultative Approach



Advanced Electro-thermal Purification

Continuous purification process utilizing temperatures in excess of 2400°C

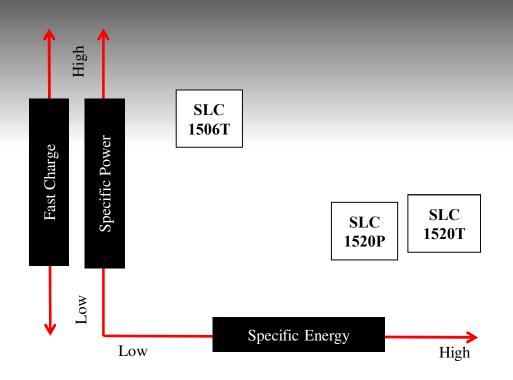

Precision Processing -Grinding & Sizing

Engineered granular particulates processed from various carbon precursors

Advanced Ceramic Shapes & Powder

Processing of α -SiC, β -SiC and B4C

Markets We Serve



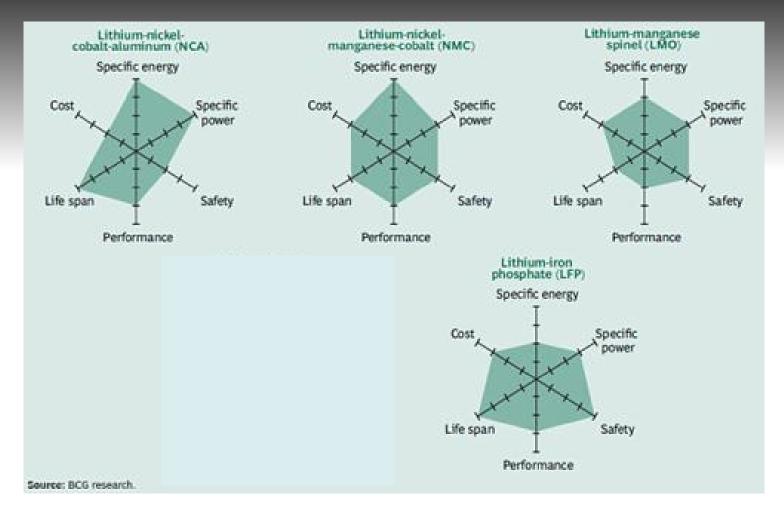
Anode Active Materials for Li-ion Batteries

-- FormulaBT® SLC series

All SLC grades have similar Cycle Life, Calendar Life, Temperature Range and Safety performance

Anode Active Materials for Li-ion Batteries

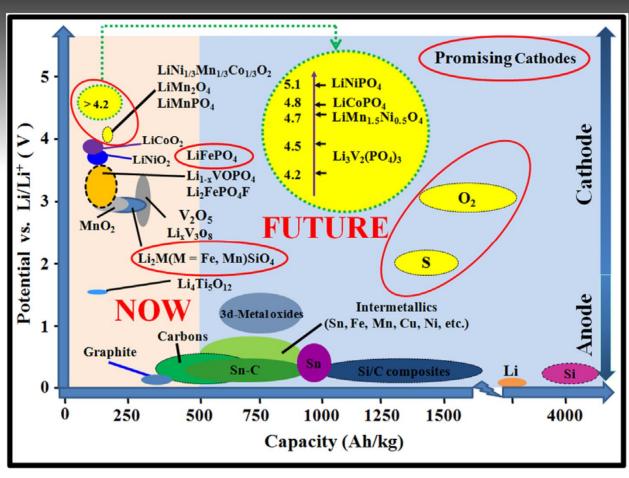
The primary function of FormulaBT SLC grades is to be used as anode active materials for high energy/high power Li-ion batteries.


Performance Criteria for Li-Ion Batteries

Application	Energy Density by volume	Energy density by weight	Cycle life	Calendar life	High Power	High temp. 55 degC	Low temp. -10 degC
Portable (cell phones, laptop, tablets, etc.)	+++	+++	++	++	+	+	+
Power tools	++	+++	+++	++	++	+	+
E-Bikes	++	+++	+++	++	++	+	+
Small EV (scooters, 3 wheelers)	++	++	+++	+++	++	++	++
HEV	+	+	+++	+++	+++	+++	+++
PHEV	+++	++	+++	+++	+++	+++	+++
EV's	+++	+++	+++	+++	++	+++	+++
Stationary	+	++	+++	+++	+	+	+

+++ very important ++ quite important + not so important

Criteria for Cathode Materials

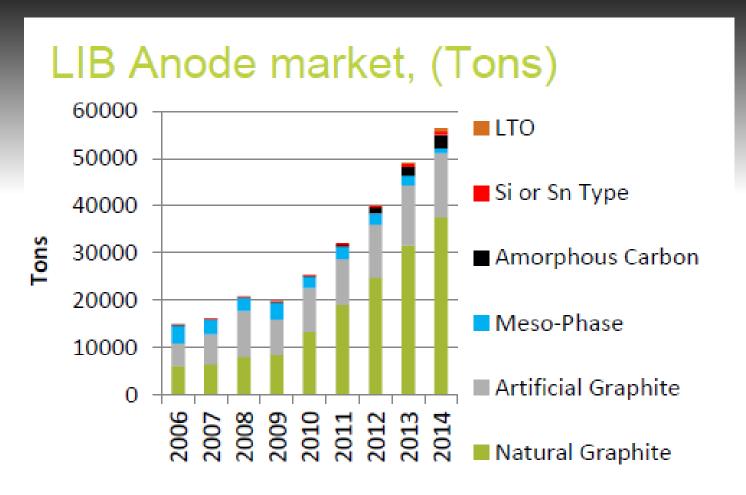


Anode Materials for Power Applications

	Capacity				
Anode	(mAh/g)	Advantage	Disadvantage		
MCMB	320-330	Cost(-), Capacity	Cycle, Low Temp, Rapid charge		
Synthetic Graphite	300-320	Cost, Capacity	Cycle, Low Temp, Rapid charge		
			Cycle(-?), Calender life (-), Low		
Natural Graphite	350-365	Cost (+), Capacity (+)	Temp, Rapid charge		
Hard Carbon/Soft		High Rate, Longevity, Low	Capacity, Initial Efficiency, Voltage		
Carbon	250-450	Temp	delay		
		High Rate (+),			
		Longevity(+), Low			
Li4Ti5O12	150-170	Temp(+), Safety(+)	Capacity (-), Cost		
Alloy anode type					
			chemically unstable and dendrite		
Li	1840		chanllengs		
Sn	990	High capacity	Large volume change during		
Si	4200		charging/discharging, unstable SEI		
Al	990		Charging/uischarging, unstable Ser		

Technical Trends in anode and cathode materials

Source: J.M. Tarascon, M. Armand, Nature 414 (2001) 359

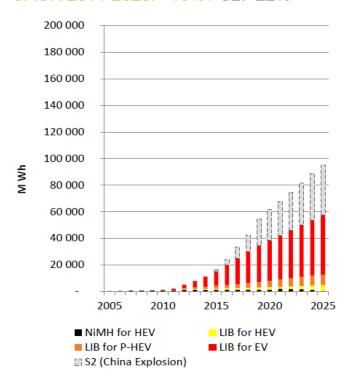

Li-ion Battery Development

Gene.	Cathode	Anode	Electrolyte	Time	Market			
1 st	4.2V LiCoO ₂	Coke	PC/DMC LiPF ₆	1991-	CE			
2 nd	4.3 V LiCoO ₂		EC-DMC, LiPF ₆	1994-	CE			
	LiMn ₂ O ₄ ,	NG			EV			
	LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂	AG Li ₄ Ti ₅ O ₁₂			grid			
	LiFePO ₄				power tool			
3rd -	4.4-4.6 V LiCoO ₂		EC-DMC, LiPF ₆ + VC, FEC, BP, ES, PS, LiBOB, LiTFSI, Silane, LiFSI, Ionic liquid	2005-	CE EV HEV Grid Others			
	LiNi _{x⊵0.5} Co _y Mn _z O ₂	Soft carbon						
	LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂	Hard carbon						
	LiFe _{1-x} Mn _x PO ₄	SnCoC SiO _x						
	xLi ₂ MnO ₃ -Li(NiCoMn)O ₂	Nano-Si/C						
	LiNi _{0.5} Mn _{1.5} O ₄							
What are the fourth generation Li-ion batteries?								

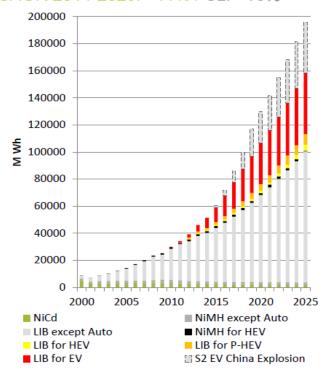
Source: Journal of The Electrochemical Society 162(14):A2509-A2528

Anode Materials Market 2006-2014

From: Avicenne Energy, Qinghai EV Rally 2015

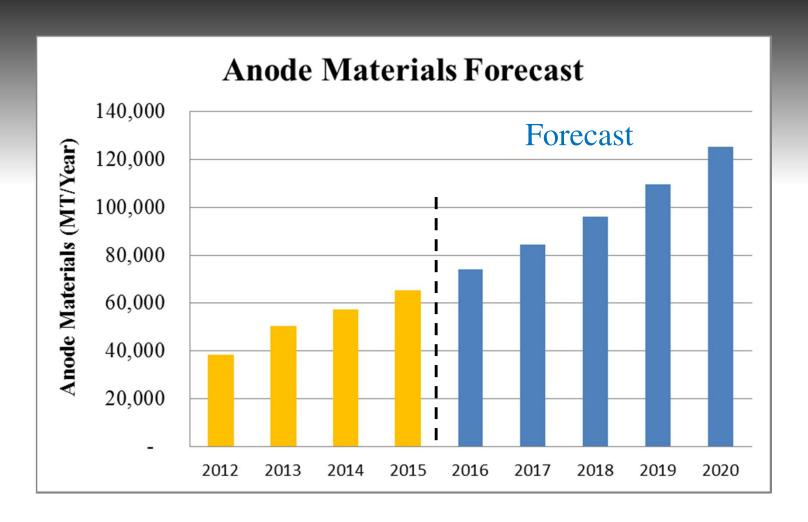


Total Battery Forecast


TOTAL BATTERY DEMAND 2025 FORECASTS

Scenario 2: thanks to very high incentives, China could change the game

EV, HEV & P-HEV Battery needs (MWh) CAGR 2014-2025: +16% / S2:+22%


Total battery demand (MWh)
CAGR 2014-2025: +11% / S2: +13%

Source: ICBR 2015, Avicenne Energy

Anode Material Forecast 2016-2020

Questions

